CD11b+ monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis.
نویسندگان
چکیده
Experimental autoimmune myocarditis (EAM) represents a Th17 T cell-mediated mouse model of postinflammatory heart disease. In BALB/c wild-type mice, EAM is a self-limiting disease, peaking 21 days after alpha-myosin H chain peptide (MyHC-alpha)/CFA immunization and largely resolving thereafter. In IFN-gammaR(-/-) mice, however, EAM is exacerbated and shows a chronic progressive disease course. We found that this progressive disease course paralleled persistently elevated IL-17 release from T cells infiltrating the hearts of IFN-gammaR(-/-) mice 30 days after immunization. In fact, IL-17 promoted the recruitment of CD11b(+) monocytes, the major heart-infiltrating cells in EAM. In turn, CD11b(+) monocytes suppressed MyHC-alpha-specific Th17 T cell responses IFN-gamma-dependently in vitro. In vivo, injection of IFN-gammaR(+/+)CD11b(+), but not IFN-gammaR(-/-)CD11b(+), monocytes, suppressed MyHC-alpha-specific T cells, and abrogated the progressive disease course in IFN-gammaR(-/-) mice. Finally, coinjection of MyHC-alpha-specific, but not OVA-transgenic, IFN-gamma-releasing CD4(+) Th1 T cell lines, together with MyHC-alpha-specific Th17 T cells protected RAG2(-/-) mice from EAM. In conclusion, CD11b(+) monocytes play a dual role in EAM: as a major cellular substrate of IL-17-induced inflammation and as mediators of an IFN-gamma-dependent negative feedback loop confining disease progression.
منابع مشابه
Innate signaling promotes formation of regulatory nitric oxide-producing dendritic cells limiting T-cell expansion in experimental autoimmune myocarditis.
BACKGROUND Activation of innate pattern-recognition receptors promotes CD4+ T-cell-mediated autoimmune myocarditis and subsequent inflammatory cardiomyopathy. Mechanisms that counterregulate exaggerated heart-specific autoimmunity are poorly understood. METHODS AND RESULTS Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with α-myosin heavy chain peptide and comp...
متن کاملMouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis.
Myeloid-derived suppressor cells (MDSCs) have been a focus of recent study on tumor-mediated immune suppression. However, its role in Th17 cell differentiation and the pathogenesis of autoimmune diseases (e.g., multiple sclerosis) has not been determined. We show in this study that development of experimental autoimmune encephalomyelitis (EAE) in mice is associated with a profound expansion of ...
متن کاملExperimental priming of encephalitogenic Th1/Th17 cells requires pertussis toxin-driven IL-1β production by myeloid cells
CD4(+) Th17 are heterogeneous in terms of cytokine production and capacity to initiate autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE). Here we demonstrate that experimental priming of encephalitogenic Th cells expressing RORγt and T-bet and producing IL-17A, IFN-γ and GM-CSF but not IL-10 (Th1/Th17), is dependent on the presence of pertussis toxin (PTX) at the time...
متن کاملLaquinimod, a Quinoline-3-Carboxamide, Induces Type II Myeloid Cells That Modulate Central Nervous System Autoimmunity
Laquinimod is a novel oral drug that is currently being evaluated for the treatment of relapsing-remitting (RR) multiple sclerosis (MS). Using the animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we examined how laquinimod promotes immune modulation. Oral laquinimod treatment reversed established RR-EAE and was associated with reduced central nervous system ...
متن کاملCardiac myosin-Th17 responses promote heart failure in human myocarditis.
In human myocarditis and its sequela dilated cardiomyopathy (DCM), the mechanisms and immune phenotype governing disease and subsequent heart failure are not known. Here, we identified a Th17 cell immunophenotype of human myocarditis/DCM with elevated CD4+IL17+ T cells and Th17-promoting cytokines IL-6, TGF-β, and IL-23 as well as GM-CSF-secreting CD4+ T cells. The Th17 phenotype was linked wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 180 4 شماره
صفحات -
تاریخ انتشار 2008